Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lancet ; 402(10399): 397-410, 2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37393920

RESUMO

BACKGROUND: A genetically engineered pig cardiac xenotransplantation was done on Jan 7, 2022, in a non-ambulatory male patient, aged 57 years, with end-stage heart failure, and on veno-arterial extracorporeal membrane oxygenation support, who was ineligible for an allograft. This report details our current understanding of factors important to the xenotransplantation outcome. METHODS: Physiological and biochemical parameters critical for the care of all heart transplant recipients were collected in extensive clinical monitoring in an intensive care unit. To ascertain the cause of xenograft dysfunction, we did extensive immunological and histopathological studies, including electron microscopy and quantification of porcine cytomegalovirus or porcine roseolovirus (PCMV/PRV) in the xenograft, recipient cells, and tissue by DNA PCR and RNA transcription. We performed intravenous immunoglobulin (IVIG) binding to donor cells and single-cell RNA sequencing of peripheral blood mononuclear cells. FINDINGS: After successful xenotransplantation, the graft functioned well on echocardiography and sustained cardiovascular and other organ systems functions until postoperative day 47 when diastolic heart failure occurred. At postoperative day 50, the endomyocardial biopsy revealed damaged capillaries with interstitial oedema, red cell extravasation, rare thrombotic microangiopathy, and complement deposition. Increased anti-pig xenoantibodies, mainly IgG, were detected after IVIG administration for hypogammaglobulinaemia and during the first plasma exchange. Endomyocardial biopsy on postoperative day 56 showed fibrotic changes consistent with progressive myocardial stiffness. Microbial cell-free DNA testing indicated increasing titres of PCMV/PRV cell-free DNA. Post-mortem single-cell RNA sequencing showed overlapping causes. INTERPRETATION: Hyperacute rejection was avoided. We identified potential mediators of the observed endothelial injury. First, widespread endothelial injury indicates antibody-mediated rejection. Second, IVIG bound strongly to donor endothelium, possibly causing immune activation. Finally, reactivation and replication of latent PCMV/PRV in the xenograft possibly initiated a damaging inflammatory response. The findings point to specific measures to improve xenotransplant outcomes in the future. FUNDING: The University of Maryland School of Medicine, and the University of Maryland Medical Center.


Assuntos
Ensaios de Uso Compassivo , Leucócitos Mononucleares , Humanos , Masculino , Transplante Heterólogo , Imunoglobulinas Intravenosas , Coração , Rejeição de Enxerto/prevenção & controle
2.
Transplantation ; 107(8): 1718-1728, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36706064

RESUMO

Cardiac xenotransplantation from swine has been proposed to "bridge the gap" in supply for heart failure patients requiring transplantation. Recent preclinical success using genetically modified pig donors in baboon recipients has demonstrated survival greater than 6 mo, with a modern understanding of xenotransplantation immunobiology and continued experience with large animal models of cardiac xenotransplantation. As a direct result of this expertise, the Food and Drug Administration approved the first in-human transplantation of a genetically engineered cardiac xenograft through an expanded access application for a single patient. This clinical case demonstrated the feasibility of xenotransplantation. Although this human study demonstrated proof-of-principle application of cardiac xenotransplantation, further regulatory oversight by the Food and Drug Administration may be required with preclinical trials in large animal models of xenotransplantation with long-term survival before approval of a more formalized clinical trial. Here we detail our surgical approach to pig-to-primate large animal models of orthotopic cardiac xenotransplantation, and the postoperative care of the primate recipient, both in the immediate postoperative period and in the months thereafter. We also detail xenograft surveillance methods and common issues that arise in the postoperative period specific to this model and ways to overcome them. These studies require multidisciplinary teams and expertise in orthotopic transplantation (cardiac surgery, anesthesia, and cardiopulmonary bypass), immunology, genetic engineering, and experience in handling large animal donors and recipients, which are described here. This article serves to reduce the barriers to entry into a field with ever-growing enthusiasm, but demands expertise knowledge and experience to be successful.


Assuntos
Transplante de Coração , Humanos , Animais , Suínos , Transplante Heterólogo/métodos , Transplante de Coração/efeitos adversos , Transplante de Coração/métodos , Primatas , Xenoenxertos , Coração , Animais Geneticamente Modificados , Rejeição de Enxerto/prevenção & controle
3.
Transplantation ; 107(7): 1472-1481, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36584382

RESUMO

Effective immune responses require antigen presentation by major histocompatibility complexes with cognate T-cell receptor and antigen-independent costimulatory signaling for T-cell activation, proliferation, and differentiation. Among several costimulatory signals, CD40-CD40L is of special interest to the transplantation community because it plays a vital role in controlling or regulating humoral and cellular immunity. Blockade of this pathway has demonstrated inhibition of donor-reactive T-cell responses and prolonged the survival of transplanted organs. Several anti-CD154 and anti-CD40 antibodies have been used in the transplantation model and demonstrated the potential of extending allograft and xenograft rejection-free survival. The wide use of anti-CD154 antibodies was hampered because of thromboembolic complications in transplant recipients. These antibodies have been modified to overcome the thromboembolic complications by altering the antibody binding fragment (Fab) and Fc (fragment, crystallizable) receptor region for therapeutic purposes. Here, we review recent preclinical advances to target the CD40-CD40L pair in transplantation.


Assuntos
Anticorpos Monoclonais , Ligante de CD40 , Humanos , Anticorpos Monoclonais/farmacologia , Antígenos CD40 , Transplante Homólogo , Linfócitos T/metabolismo , Sobrevivência de Enxerto , Rejeição de Enxerto
4.
Xenotransplantation ; 29(3): e12744, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35357044

RESUMO

We report orthotopic (life-supporting) survival of genetically engineered porcine cardiac xenografts (with six gene modifications) for almost 9 months in baboon recipients. This work builds on our previously reported heterotopic cardiac xenograft (three gene modifications) survival up to 945 days with an anti-CD40 monoclonal antibody-based immunosuppression. In this current study, life-supporting xenografts containing multiple human complement regulatory, thromboregulatory, and anti-inflammatory proteins, in addition to growth hormone receptor knockout (KO) and carbohydrate antigen KOs, were transplanted in the baboons. Selective "multi-gene" xenografts demonstrate survival greater than 8 months without the requirement of adjunctive medications and without evidence of abnormal xenograft thickness or rejection. These data demonstrate that selective "multi-gene" modifications improve cardiac xenograft survival significantly and may be foundational for paving the way to bridge transplantation in humans.


Assuntos
Rejeição de Enxerto , Transplante de Coração , Animais , Animais Geneticamente Modificados , Sobrevivência de Enxerto , Xenoenxertos , Humanos , Imunossupressores , Papio , Suínos , Transplante Heterólogo
5.
Front Immunol ; 12: 667093, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177906

RESUMO

Background: Perioperative cardiac xenograft dysfunction (PCXD) describes a rapidly developing loss of cardiac function after xenotransplantation. PCXD occurs despite genetic modifications to increase compatibility of the heart. We report on the incidence of PCXD using static preservation in ice slush following crystalloid or blood-based cardioplegia versus continuous cold perfusion with XVIVO© heart solution (XHS) based cardioplegia. Methods: Baboons were weight matched to genetically engineered swine heart donors. Cardioplegia volume was 30 cc/kg by donor weight, with del Nido cardioplegia and the addition of 25% by volume of donor whole blood. Continuous perfusion was performed using an XVIVO © Perfusion system with XHS to which baboon RBCs were added. Results: PCXD was observed in 5/8 that were preserved with crystalloid cardioplegia followed by traditional cold, static storage on ice. By comparison, when blood cardioplegia was used followed by cold, static storage, PCXD occurred in 1/3 hearts and only in 1/5 hearts that were induced with XHS blood cardioplegia followed by continuous perfusion. Survival averaged 17 hours in those with traditional preservation and storage, followed by 11.47 days and 15.03 days using blood cardioplegia and XHS+continuous preservation, respectively. Traditional preservation resulted in more inotropic support and higher average peak serum lactate 14.3±1.7 mmol/L compared to blood cardioplegia 3.6±3.0 mmol/L and continuous perfusion 3.5±1.5 mmol/L. Conclusion: Blood cardioplegia induction, alone or followed by XHS perfusion storage, reduced the incidence of PCXD and improved graft function and survival, relative to traditional crystalloid cardioplegia-slush storage alone.


Assuntos
Transplante de Coração , Animais , Parada Cardíaca Induzida/métodos , Xenoenxertos , Papio , Perfusão , Suínos , Transplante Heterólogo
6.
Sci Rep ; 10(1): 10709, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32612124

RESUMO

Heterotopic cardiac transplantation in the intra-abdominal position in a large animal model has been essential in the progression of the field of cardiac transplantation. Our group has over 10 years of experience in cardiac xenotransplantation with pig to baboon models, the longest xenograft of which survived over 900 days, with rejection only after reducing immunosuppression. This article aims to clarify our approach to this model in order to allow others to share success in long-term survival. Here, we demonstrate the approach to implantation of a cardiac graft into the intra-abdominal position in a baboon recipient for the study of transplantation and briefly highlight our model's ability to provide insight into not only xenotransplantation but across disciplines. We include details that have provided us with consistent success in this model; performance of the anastomoses, de-airing of the graft, implantation of a long-term telemetry device for invasive graft monitoring, and ideal geometric positioning of the heart and telemetry device in the limited space of the recipient abdomen. We additionally detail surveillance techniques to assess long-term graft function.


Assuntos
Sobrevivência de Enxerto/fisiologia , Transplante de Coração/métodos , Transplante Heterólogo/métodos , Transplante Heterotópico/métodos , Abdome/cirurgia , Animais , Feminino , Rejeição de Enxerto/prevenção & controle , Imunossupressores/uso terapêutico , Masculino , Modelos Animais , Papio , Suínos , Doadores de Tecidos
7.
Ann Thorac Surg ; 109(5): 1357-1361, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31589847

RESUMO

BACKGROUND: Perioperative cardiac xenograft dysfunction (PCXD) was described by McGregor and colleagues as a major barrier to the translation of heterotopic cardiac xenotransplantation into the orthotopic position. It is characterized by graft dysfunction in the absence of rejection within 24 to 48 hours of transplantation. We describe our experience with PCXD at a single program. METHODS: Orthotopic transplantation of genetically engineered pig hearts was performed in 6 healthy baboons. The immunosuppression regimen included induction by anti-CD20 monoclonal antibodies (mAb), thymoglobulin, cobra venom factor, and anti-CD40 mAb, and maintenance with anti-CD40 mAb, mycophenolate mofetil, and tapering doses of steroids. Telemetry was used to assess graft function. Extracorporeal membrane oxygenation was used to support 1 recipient. A full human clinical transplantation team was involved in these experiments and the procedure was performed by skilled transplantation surgeons. RESULTS: A maximal survival of 40 hours was achieved in these experiments. The surgical procedures were uneventful, and all hearts were weaned from cardiopulmonary bypass without issue. Support with inotropes and vasopressors was generally required after separation from cardiopulmonary bypass. The cardiac xenografts performed well immediately, but within the first several hours they required increasing support and ultimately resulted in arrest despite maximal interventions. All hearts were explanted immediately; histology showed no signs of rejection. CONCLUSIONS: Despite excellent surgical technique, uneventful weaning from cardiopulmonary bypass, and adequate initial function, orthotopic cardiac xenografts slowly fail within 24 to 48 hours without evidence of rejection. Modification of preservation techniques and minimizing donor organ ischemic time may be able to ameliorate PCXD.


Assuntos
Rejeição de Enxerto/fisiopatologia , Transplante de Coração/efeitos adversos , Terapia de Imunossupressão/métodos , Imunossupressores/uso terapêutico , Animais , Biópsia , Modelos Animais de Doenças , Feminino , Rejeição de Enxerto/diagnóstico , Rejeição de Enxerto/tratamento farmacológico , Sobrevivência de Enxerto , Masculino , Papio , Período Perioperatório , Suínos , Transplante Heterólogo
8.
Front Cardiovasc Med ; 6: 95, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31404245

RESUMO

Heterotopic cardiac xenotransplantation in the intra-abdominal position has been studied extensively in a pig-to-baboon model to define the optimal donor genetics and immunosuppressive regimen to prevent xenograft rejection. Extensive investigation using this model is a necessary stepping stone toward the development of a life-supporting animal model, with the ultimate goal of demonstrating suitability for clinical cardiac xenotransplantation trials. Aspects of surgical technique, pre- and post-operative care, graft monitoring, and minimization of infectious risk have all required refinement and optimization of heterotopic cardiac xenotransplantation over time. This review details non-immunologic obstacles relevant to this model described by our group and in the literature, as well as strategies that have been developed to address these specific challenges.

9.
Xenotransplantation ; 26(2): e12465, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30290025

RESUMO

A combination of genetic manipulations of donor organs and target-specific immunosuppression is instrumental in achieving long-term cardiac xenograft survival. Recently, results from our preclinical pig-to-baboon heterotopic cardiac xenotransplantation model suggest that a three-pronged approach is successful in extending xenograft survival: (a) α-1,3-galactosyl transferase (Gal) gene knockout in donor pigs (GTKO) to prevent Gal-specific antibody-mediated rejection; (b) transgenic expression of human complement regulatory proteins (hCRP; hCD46) and human thromboregulatory protein thrombomodulin (hTBM) to avoid complement activation and coagulation dysregulation; and (c) effective induction and maintenance of immunomodulation, particularly through co-stimulation blockade of CD40-CD40L pathways with anti-CD40 (2C10R4) monoclonal antibody (mAb). Using this combination of manipulations, we reported significant improvement in cardiac xenograft survival. In this study, we are reporting the survival of cardiac xenotransplantation recipients (n = 3) receiving xenografts from pigs without the expression of hTBM (GTKO.CD46). We observed that all grafts underwent rejection at an early time point (median 70 days) despite utilization of our previously reported successful immunosuppression regimen and effective control of non-Gal antibody response. These results support our hypothesis that transgenic expression of human thrombomodulin in donor pigs confers an independent protective effect for xenograft survival in the setting of a co-stimulation blockade-based immunomodulatory regimen.


Assuntos
Rejeição de Enxerto/imunologia , Sobrevivência de Enxerto/imunologia , Xenoenxertos/imunologia , Trombomodulina/imunologia , Transplante Heterólogo , Animais , Animais Geneticamente Modificados , Técnicas de Inativação de Genes , Rejeição de Enxerto/genética , Sobrevivência de Enxerto/genética , Transplante de Coração/métodos , Terapia de Imunossupressão/métodos , Imunossupressores/farmacologia , Suínos , Transplante Heterólogo/métodos
10.
J Heart Lung Transplant ; 37(8): 967-975, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29933912

RESUMO

BACKGROUND: Observational studies suggest that cell-free DNA (cfDNA) is a biomarker of tissue injury in a range of conditions including organ transplantation. However, the lack of model systems to study cfDNA and its relevance to tissue injury has limited the advancements in this field. We hypothesized that the predictable course of acute humoral xenograft rejection (AHXR) in organ transplants from genetically engineered donors provides an ideal system for assessing circulating cfDNA as a marker of tissue injury. METHODS: Genetically modified pig donor hearts were heterotopically transplanted into baboons (n = 7). Cell-free DNA was extracted from pre-transplant and post-transplant baboon plasma samples for shotgun sequencing. After alignment of sequence reads to pig and baboon reference sequences, we computed the percentage of xenograft-derived cfDNA (xdcfDNA) relative to recipient by counting uniquely aligned pig and baboon sequence reads. RESULTS: The xdcfDNA percentage was high early post-transplantation and decayed exponentially to low stable levels (baseline); the decay half-life was 3.0 days. Post-transplantation baseline xdcfDNA levels were higher for transplant recipients that subsequently developed graft loss than in the 1 animal that did not reject the graft (3.2% vs 0.5%). Elevations in xdcfDNA percentage coincided with increased troponin and clinical evidence of rejection. Importantly, elevations in xdcfDNA percentage preceded clinical signs of rejection or increases in troponin levels. CONCLUSION: Cross-species xdcfDNA kinetics in relation to acute rejection are similar to the patterns in human allografts. These observations in a xenotransplantation model support the body of evidence suggesting that circulating cfDNA is a marker of tissue injury.


Assuntos
Biomarcadores/sangue , Ácidos Nucleicos Livres/sangue , Transplante de Coração/efeitos adversos , Transplante Heterólogo/efeitos adversos , Doença Aguda , Animais , Seguimentos , Rejeição de Enxerto/imunologia , Meia-Vida , Organismos Geneticamente Modificados , Papio , Suínos , Transplante Heterotópico , Troponina/sangue
11.
Xenotransplantation ; 25(2): e12379, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29250828

RESUMO

BACKGROUND: CD4+CD25Hi FoxP3+ T (Treg) cells are a small subset of CD4+ T cells that have been shown to exhibit immunoregulatory function. Although the absolute number of Treg cells in peripheral blood lymphocytes (PBL) is very small, they play an important role in suppressing immune reactivity. Several studies have demonstrated that the number of Treg cells, rather than their intrinsic suppressive capacity, may contribute to determining the long-term fate of transplanted grafts. In this study, we analyzed Treg cells in PBL of long-term baboon recipients who have received genetically modified cardiac xenografts from pig donors. METHODS: Heterotopic cardiac xenotransplantation was performed on baboons using hearts obtained from GTKO.hCD46 (n = 8) and GTKO.hCD46.TBM (n = 5) genetically modified pigs. Modified immunosuppression regimen included antithymocyte globulin (ATG), anti-CD20, mycophenolate mofetil (MMF), cobra venom factor (CVF), and costimulation blockade (anti-CD154/anti-CD40 monoclonal antibody). FACS analysis was performed on PBLs labeled with anti-human CD4, CD25, and FoxP3 monoclonal antibodies (mAb) to analyze the percentage of Treg cells in six baboons that survived longer than 2 months (range: 42-945 days) after receiving a pig cardiac xenograft. RESULTS: Total WBC count was low due to immunosuppression in baboons who received cardiac xenograft from GTKO.hCD46 and GTKO.hCD46.hTBM donor pigs. However, absolute numbers of CD4+CD25Hi FoxP3 Treg cells in PBLs of long-term xenograft cardiac xenograft surviving baboon recipients were found to be increased (15.13 ± 1.50 vs 7.38 ± 2.92; P < .018) as compared to naïve or pre-transplant baboons. Xenograft rejection in these animals was correlated with decreased numbers of regulatory T cells. CONCLUSION: Our results suggest that regulatory T (Treg) cells may contribute to preventing or delaying xenograft rejection by controlling the activation and expansion of donor-reactive T cells, thereby masking the antidonor immune response, leading to long-term survival of cardiac xenografts.


Assuntos
Transplante de Coração , Xenoenxertos/imunologia , Linfócitos T Reguladores/imunologia , Tempo , Transplante Heterólogo , Animais , Animais Geneticamente Modificados , Fatores de Transcrição Forkhead/imunologia , Rejeição de Enxerto/tratamento farmacológico , Rejeição de Enxerto/imunologia , Sobrevivência de Enxerto/imunologia , Transplante de Coração/métodos , Tolerância Imunológica , Terapia de Imunossupressão/métodos , Imunossupressores/farmacologia , Papio , Suínos , Transplante Heterólogo/métodos
12.
Xenotransplantation ; 24(6)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28940570

RESUMO

BACKGROUND: Innovations in transgenic technology have facilitated improved xenograft survival. Additional gene expression appears to be necessary to overcome the remaining immune and biologic incompatibilities. We report for the first time the novel use of six-gene modifications within a pig-to-baboon cardiac xenotransplantation model. METHODS: Baboons (8-15 kg) underwent heterotopic cardiac transplantation using xenografts obtained from genetically engineered pigs. Along with previously described modifications (GTKO, hCD46), additional expression of human transgenes for thromboregulation (endothelial protein C receptor, tissue factor pathway inhibitor, thrombomodulin), complement inhibition (decay accelerating factor), and cellular immune suppression (hCD39, hCD47) was used. Immunosuppression consisted of targeted T-cell and B-cell depletion and conventional anti-rejection agents. RESULTS: Heterotopic cardiac transplantations were performed without complication. Flow cytometry and immunohistochemistry on donor biopsies confirmed transgenic phenotype. In contrast to the prior three-gene generation, significant coagulopathy or consumptive thrombocytopenia has not been observed in the six-gene cohort. As a result, these recipients have experienced decreased bleeding-related complications. Pro-inflammatory responses also appear to be mitigated based on cytokine analysis. Baboons survived the critical 30-day post-operative period when mortality has historically been highest, with no evidence of graft rejection. CONCLUSIONS: The inclusion of additional human genes in genetically engineered pigs appears to confer superior xenograft outcomes. Introduction of these genes has not been associated with adverse outcomes. This multifactorial approach to genetic engineering furthers the prospect of long-term cardiac xenograft survival and subsequent clinical application.


Assuntos
Rejeição de Enxerto/imunologia , Transplante de Coração , Xenoenxertos/imunologia , Imunossupressores/farmacologia , Transplante Heterólogo , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/imunologia , Sobrevivência de Enxerto/imunologia , Transplante de Coração/métodos , Terapia de Imunossupressão/métodos , Papio/metabolismo , Papio hamadryas , Suínos , Transplante Heterólogo/métodos , Transplante Heterotópico/métodos
13.
Nat Commun ; 7: 11138, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27045379

RESUMO

Preventing xenograft rejection is one of the greatest challenges of transplantation medicine. Here, we describe a reproducible, long-term survival of cardiac xenografts from alpha 1-3 galactosyltransferase gene knockout pigs, which express human complement regulatory protein CD46 and human thrombomodulin (GTKO.hCD46.hTBM), that were transplanted into baboons. Our immunomodulatory drug regimen includes induction with anti-thymocyte globulin and αCD20 antibody, followed by maintenance with mycophenolate mofetil and an intensively dosed αCD40 (2C10R4) antibody. Median (298 days) and longest (945 days) graft survival in five consecutive recipients using this regimen is significantly prolonged over our recently established survival benchmarks (180 and 500 days, respectively). Remarkably, the reduction of αCD40 antibody dose on day 100 or after 1 year resulted in recrudescence of anti-pig antibody and graft failure. In conclusion, genetic modifications (GTKO.hCD46.hTBM) combined with the treatment regimen tested here consistently prevent humoral rejection and systemic coagulation pathway dysregulation, sustaining long-term cardiac xenograft survival beyond 900 days.


Assuntos
Anticorpos/farmacologia , Sobrevivência de Enxerto/efeitos dos fármacos , Transplante de Coração , Fatores Imunológicos/farmacologia , Imunoterapia/métodos , Animais , Animais Geneticamente Modificados , Soro Antilinfocitário/farmacologia , Antígenos CD40/antagonistas & inibidores , Antígenos CD40/genética , Antígenos CD40/imunologia , Feminino , Galactosiltransferases/deficiência , Galactosiltransferases/genética , Galactosiltransferases/imunologia , Expressão Gênica , Humanos , Masculino , Proteína Cofatora de Membrana/genética , Proteína Cofatora de Membrana/imunologia , Ácido Micofenólico/análogos & derivados , Ácido Micofenólico/farmacologia , Papio , Rituximab/farmacologia , Suínos , Trombomodulina/genética , Trombomodulina/imunologia , Transgenes , Transplante Heterólogo
14.
Xenotransplantation ; 21(1): 35-45, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24164510

RESUMO

BACKGROUND: Recently, we have shown that an immunosuppression regimen including costimulation blockade via anti-CD154 antibody significantly prolongs the cardiac xenograft survival in a GTKO.hCD46Tg pig-to-baboon heterotopic xenotransplantation model. Unfortunately, many coagulation disorders were observed with the use of anti-CD154 antibody, and recipient survival was markedly reduced by these complications. MATERIAL AND METHODS: In this experiment, we replaced anti-CD154 antibody with a more clinically acceptable anti-CD40 antibody while keeping the rest of the immunosuppressive regimen and the donor pig genetics the same. This was carried out to evaluate the antibody's role in xenograft survival and prevention of coagulopathies. Two available clones of anti-CD40 antibody were tested. One mouse anti-human CD40 antibody, (clone 3A8), activated B lymphocytes in vitro and only modestly suppressed antibody production in vivo. Whereas a recombinant mouse non-human primate chimeric raised against macaque CD40, (clone 2C10R4), blocked B-cell activation in vitro and completely blocked antibody production in vivo. RESULTS: The thrombotic complications seen with anti-CD154 antibody were effectively avoided but the graft survival, although extended, was not as prolonged as observed with anti-CD154 antibody treatment. The longest survival for the 3A8 antibody group was 27 days, and the longest graft survival in the 2C10R4 antibody group was 146 days. All of the grafts except two rejected and were explanted. Only two recipient baboons had to be euthanized due to unrelated complications, and the rest of the baboons remained healthy throughout the graft survival period or after graft explantation. In contrast to our anti-CD 154 antibody-treated baboons, the non-Gal antibody levels started to rise after B cells made their appearance around 8 weeks post-transplantation. CONCLUSIONS: Anti-CD40 antibody at the current dose does not induce any coagulopathies but while effective, had reduced efficacy to induce similar long-term graft survival as with anti-CD154 antibody perhaps due to ineffective control of B-cell function and antibody production at the present dose. More experiments are required to determine antibody affinity and effective dose for inducing long-term cardiac xenograft survival.


Assuntos
Anticorpos/imunologia , Antígenos CD40/imunologia , Rejeição de Enxerto/imunologia , Sobrevivência de Enxerto/imunologia , Animais , Animais Geneticamente Modificados , Formação de Anticorpos , Linfócitos B/imunologia , Ligante de CD40/imunologia , Rejeição de Enxerto/prevenção & controle , Xenoenxertos , Imunossupressores/farmacologia , Papio , Sus scrofa , Suínos , Transplante Heterólogo/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...